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AN ANALOG EXPERTMENT ON TURBULENT LIQUID METAL HEAT ZlO**
TRANSFER IN THE ENTRANCE REGION OF NONCIRCULAR DUCTS¥ -
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An electrical analog made of conducting paper, electrical

ABSTRACT

sheet, and metal foil is used to solve the two-dimensional
Fourier equations. The analog was used to find the tempera-
ture distribution on the entrance walls for the case of a
steady "creeping”" flow in the entrance region of ducts with

variously shaped noncirculsr cross sections.

It is pecessary in many present-day heat exchangers, in order to reduce
their size and weight, to use ducts with a noncircular cross section. Often
the length of the duct is so short that the temperature and velocity profiles do
not have a chance to become fully developed before the fluid has emerged from
the tube. Consequently, in many compact heat exchangers the thermal and fluid
entrance region occupies & considerable fraction of the duct length.

For & fully developed turbulent flow of liquid metal in circular ducts,
Lyon (ref. 1), Clayborne (ref. 2), and others have ascertained that the heat
transfer characteristics may be calculated by means of a suitable combination
of individual factors due to molecular conducfiégﬂggd turbulent exchange. In-
asmuch as the velocity profile in a turbulent flow approximates the profile of a
slow flow, the convective heat transfer may be calculated from the magnitude of

the molecular conductivity on the basis of the energy equation, wherein the real

boundary conditions assuming a constant velocity distribution are used.

*Translated (into Russian) by E. A. Bogacheva.

*¥¥Numbers in the mergin indicate pagination in the original foreign text.



Hartnett snd Irvine (ref. 3) have used this method to analyze heat transfer in
poncircular ducts. Also investigated in this paper were the various boundary
conditions that could exist in the investigation of heat transfer in noncircular
tubes. Theyindicated, in particular, that if the heat flux is given, one should
be primarily concerned with the peripheral tempersture distribution at the well,
since the structure of the flow ususlly requires the meximum working tempera-
ture possible. Consequently, the wall temperature distribution determined in
the analysis of the slow flow problem mey be taken &s & limiting case in turbu-
lent flow. Any turbulent transport will bhave a smoothing influence on the
temperature distribution of creeping flow.

The objective of the present article is to investigate these creeping flow

temperature distributions in the entrance region of ducts with various types of

noncircular cross sections. These temperature distributions represent limitinglL;_

cases, but they may be used to build simplified constructions epproximating the
actual design conditions for small Re numbers in turbulent flow.

It is also instructive to note that the problem of convection of a steady
creeping flow is at once the problem of heat conduction of & nonsteady flow for
the case of a plane solid of the same cross section and under identical boundary
conditions. The solutions given in the present article for all cross section
configurations, with the exception of parallel plates and circles, have never
been derived before.

INITTAL EQUATIONS AND ELECTRICAL SIMULATION PRINCIPLES

Consider the entrance region of a duct with a constant cross section
(fig. 1la). Fluid enters the duct at & constent temperature TO’ flowing through
the duct at a constant velocity w. The coordinate system is chosen so that the

z-axis will pass through the center of the duct cross section, the origin being
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located at the duct entrance. With constant thermophysicel characteristics on
the part of the fluid in an incompressible flow, only an inconsequential vis-
cous dissipation of energy, and low thermal conductivity in the exial direction,

the heat conduction equation for a stesdy-state flow may be written as follows:

FT 62T wa?'. (1)

For a constant heat flux, the boundery conditions for Eq. (1) at the surface o

are the following

- -a—T-,=---‘L"_-=const,
S (2)-(3)

T—To -z z x

* = ’X=_0Y=Ly
4q.4,/k dyRePr dy G
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With the dimensionless variables 0=

N-=Fn—3 , equation (1) and its associated boundary conditions are reduced to
. h

dimensionless form. Equation (l) becomes

#8 . #0 _ a0 %)
e Tavr T ez (

and the boundary conditions (2) and (3) at the surface X are as follows:

29 _ -1
-4 (5)-(6)
6(X,Y,0=0.

The reduced temperature of the fluid is determined by the heat balance

equation for an element of fluid:

dT,,=—q"-P—dz. ' (7)
wApc
Integrating from Tb = TO, z = 0 to Tb =T,z =2z,wve obtain £12




L 0 . (8)-(9)

Reducing it to dimensionless form, we obtain

i

Figure 1. Diagram of Noncircular Duct (a) and Electrical Analog Model (b):
1) Conducting Sheet; 2) Dielectric; 3) Metal Foil.

Let us now examine an electrical model (ref. 4) consisting of & thin di-
electric sheet placed between electrically conducting steel sheet and a sheet
of metal foil (Fig. 1b). The boundary of the model is the curve
o* =g*(x¥, y*), the form of which is the same &s the duct cross section o(x, y).
The coordinate system (x* ’ y¥) is oriented such that the origin is located at
the center of the curve o¥, the x¥y¥-plane coinciding with the plane of the

model. Electric current can flow in the model via the curve o*, and the
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electrical circuit is closed by grounding the metel foil. If the resistance of
the conducting sheet and the thickness of the dielectric are uniform over the
entire model, the initiel differentisl equation becomes

®E | &FE dE
. =RC
P ay* R o (11)

If after the passage of & certain time t = O the electric current flowing
in the model is constant over & unit length of the curve 0% and if the entire
model is subjected to a uniform potential E until the time t = O, the boundary

conditions of equetion (11) at the surface g% will be as follows:

. ) |
9E = — Ri,=const, .
on* : . (12)-(13)
E (x*, y*, 0) = E, = const.
These equations reduce to normel form with a suiteble choice of the £13
. . E—E, T e v
following dimensionless veriables: = ——2 2¢%= s Xt =2, Vo=,
"e . HAR diRC &' T4
, &
N*=—';T.‘, as & result of which equation (11) assumes the form
H . h
A L
ox= " or<  ezv - | (1)
and the boundary conditions (12) and (13) at the surface X*¥ become
asr 1
* o
N £ . (15)-(16)

6%(X*,¥*,0) =0. -

The reduced potentisal Eb on the electrical model may be determined by

formulating the energy balance equation for the model:

dEb= A+C dt. (]_7)




Integrating from EO to Eb and from to to t, we obtain

Ep

g dE, = f ac | (18)

or ;
it |
E =E"—_—! .
P Cdy (19)
or, in dimensionless form,
B=2% (20)

Comparing equetion (4) and its boundery conditions (5), (6) with equation
(14) and its boundary conditions (15), (16), we note that both systems of equa-
tions are identical. Consequently, the solution of one system of equations is
a solution of the other system of equations. The boundery condition of constant
heat input is replaced by constant influx of current in the electrical model.
The present investigation is based on this analogy

EXPERIMENTAL PART

The apparatus was made up of the components shown in figure 2. In order
to approximate a constant flow of current in the model at the boundary, it was
necessary to divide the current supply into a definite number of dcinputs slong
the boundary. The method yielding the most satisfactory results is illustrated
in figure 3.

For the resistance, we used conducting paper with R = 1400 chms per square
inch. The resistance of this sheet was linear within 2% in any direction, but
it was approximately 10% higher across the sheet than along it. In order to
render the resistance of the model uniform in every direction, the models were

fabricated from two layers of conducting sheet, cut out so that the cross
6
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Figure 2. Principal Components of the Apparatus:

1) Protective Shield; 2) Protective Insert; 3) Protective Plate; 4) Flange;

5) Common Busbar; 6) Input Resistances; 7) Measurement Panel; 8) Aluminum Foil;
9) Oscilloscope; 10) Dielectric; 11) Upper Half of Resistance Model; 12) Upper
Half of Auxiliary Model; 13) Lower Half of Resistance Model; 14) Lower Half of
Auxiliary Model; 15) Dielectric; 16) Square Pulse Generator; 17) Aluminum Foil;
18) Frame; 19) Rubber Insert; 20) Cast Iron Plate; 21) Pressure Tank; 22) Pres-
sure Indicator.

direction of half the model would correspond to the long direction of the Zlh

other half. When the conducting sides of the paper were joined, the resistance
of the models was @bout TOO ohms per square inch.

To increase the capacitance of the model, the sheets of the dielectric and

metal foil were placed on either side of the model made up of the resistances



(fig. 3). As a result, the capacitance of the model was approximately equal to

1000 pF/ 12,

—
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Figure 3. Basic and Auxilisry Models Used to Solve the Problem of a Duct
with Cross Section in the Shape of an Equilateral Triangle. The Construc-
tion and Layout of These Models are Shown: &) Panel; b) Foil; c¢) Dielec-
tric; d) Upper Half of Resistance Model; d') Auxiliary Model; e) Lower Half
of Resistance Model; e') Auxiliary Model; f) Dielectric; g) Foil. 1) Com-
mon Busbar; 2) Input Resistances; 3) Boundary; U4) Auxiliary Model;

5) Adisbatic Lines; 6) Conducting Sheet; 7) Foil; 8) Dielectric; 9) Silver
Paint.

Instead of measuring all the parameters required in order to determine the
dimensionless potential 6% and dimensionless time Z¥, we constructed an auxiliary
model of conducting sheet, which was joined directly with the sheet from which
the main model was cut. The auxiliary model was again cut out of two pleces of

conducting sheet situsted at right angles to one another.



It is apparent from the anslysis that the potential measured at the inputs

of the asuxiliary model is given by

EO = 4i,,R-

Another useful measurement may be performed on the model itself. The slope
of the potential as a function of time approaches a constant value as t in-
creases. It follows from the anaslysis that

dE | -« 4iy
g |0 Cdy - (21)

Invoking the dimensionless varisbles, we cobtain

go = £E=Eo .—_'E“Eg
. 4i,Rd; %u _u,

gomt __t dEL __t dE
, d;’RC . i RE dt |eyo Eﬁ’ug;. df {50 -

.

(22)-(23)

Consequently, 6% and 7Z¥ mey be ascertained from measurements of EO, E, t, d:g, &5_
E, 5 204 dE/dt.

The frame for the model was constructed so as to protect the model and in-
put resistances from harmful electrical effects without the buildup of added
injurious capacitance. A rubber insert held the model and auxiliary model tight
with & uniform pressure of approximately seven pounds per square inch when pres-
sure wes created in the tank by a bicycle pump. Forty holes 3/16 of an inch in
dismeter were drilled slong the base of the protective cover, so that the oscil-
loscope probes could be brought in contact with each input resistance. A
shielded lead was connected to the busbar for the power supply, which was fed in
through the end of the protective cover. The length of the lead-in was three

inches and it terminated in a banana jack, which was connected to the output of



a square pulse generator with a resistance of 600 ohms and a voltage of 55 V. Z!éi
Pertinent data on the construction of the model and the experimental technique
mey be found in reference 5.
COMPARISON OF THE MODEL AND ANALYTICAL SOLUTIONS

The analytical solutions for the wall temperature distributions in creep-
ing flow in circular ducts and between parallel plates with constent heat flux
at the wall mey be obtained from the solutions given in reference 6 for non-
steady-state convection. Trensforming these solutions into dimensionless

variables, we obtain

. 1 1 syexp(—16n2x22) |
=7 4 —— —
” +48 81:’“_2=l nt (2k)
for parallel plates and
b=2+ Ly tha | (25)
22 4 B

for circuler ducts.

Using up to 35 yerms of the series, Zess has computed the dimensionless
temperature ew.at the wall for various positions Z along the duct and for the
surfaces of parallel plates. These results are indicated by the solid curves in
figure U4, which also gives the previously described experimental data obtained
on our apparatus. It is evident from figure 4 that the experimental results

are in good agreement with the theoretical data.

SOLUTIONS FOR EQUILATERAL, POLYGONS
Measurements were performed using other geometries and employing the same
experimental methods. Data on an equilateral triangle are shown in figures 4

and 5. The variation of the dimensionless wall temperature in two positions
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Figure 4. Dimensionless Temperature Distribution at the Wall

for Ducts A, B, C (See Teble):
1) Solution Obtained with Series; 2) Model No. P1l; 3) Model No.P2;
%) Model No. Cl; 5) Model No. C2; 6) Asymptotic Solution of
Clayborne; T) Apalog Solution; 8) Model No. T1; 9) Model No. T2.

moving downward along the tube is shown in figure 4. The peripheral wall tem-

perature distributions at various distances from the input are given in Pigure Zl{
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Figure 5. Dimensionless Temperature Distribution at the Wall
of Ducts with Cross Sections C and D for Various Values of Z:

Z = 1) 0.250; 2) 0.225; 3) 0.200; 4) 0.175; 5) 0.150; 6) 0.125;

T) 0.100; 8) 0.075; 9) 0.050; 10) 0.025; 11) 0.10; 12) 0.08;
13) 0.06; 1k4) 0.04; 15) 0.02.
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The dashed curves in both figures correspond to solutions given in rei’ér-
ence 2 for a completely steady flow. The experimental results are agein in good
agreement with the theoretical data. It is important to note that figure 5
represents a graph of a series of experimental curves analogous to the curves
in figure L.

TABLE

DUCTS OF VARIOUS SHAPES WITH THE BOUNDARY CONDITION q, = const

i

Duct | ~ Section. Duct Section
7 qureonst, . . B
S el SO
A Ai LL .\'
% . S
1 To Qu E
T Qureonst -
. : ) . . ,.
p ' S ’ T 4 gtnﬂS"; F l .
C:. 1 _ 7 w
o : 7 ' : ES
.s X
U L,
. Tw -
IO
D e . Y i
R o Y - 4
I ‘

The wall temperature distributions for squares, pentagons, hexagons, and
octagons are given in figures 5 and 6, in correspondence with the teble. The
dashed curves again correspond to the asymptotic solutions for points far re-
moved from the duct entrance region. These asymptotic solutions are obtained
from the solutions for an equilateral polygon with n sides:

. L, I XY 17 ox
by =24+ — +— [} —— [ gn2E, (26)
= + pr +16*[( 1 ) v_G:Itun 2

which, to the best of the author's knowledge, has not been published heretofore.
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Figure 6. Dimensionless Temperature Distribution at the Wall for lﬁgi
Ducts with the Shapes E, ¥, G for Various Values of Z:
Z = 1) 0.09; 2) 0.08; 3) 0.07; 4) 0.06; 5) 0.05; 6) 0.04; T) 0.03;
8) 0.02; 9) 0.01; 10) 0.10; 11) 0.08; 12) 0.06; 13) 0.0k; 15) 0.150;
16) 0.125; 17) 0.100; 18) 0.075; 19) 0.050; 20) 0.025.
SUMMARY OF NOMENCLATURE

A = cross sectional area of duct; A¥ = surface area of electrical model;
B_ = positive roots of the equation Jl(B) = 0; ¢ = specific heat; C = capacitance
of model per unit area; dh = hydraulic dismeter of duct; dﬁ = hydraulic diameter
of electrical model; E = potential at any point on the electrical model; Eaux =
= potential at the input to the auxiliary model; iw = electric current in the
model per unit length along the boundary; Jl = first-order Bessel function; k =
= coefficient of thermel conductivity; n = distance perpendicular to the duct
wall; n¥* = distance perpendicular to the boundary of the electrical model; N =
= dimensionless distance normal to the duct well, N = n/dh; M = dimensionless
distance normal to the boundary of the electrical model, N¥ = n*/dﬁ; P = duct
perimeter; P¥ = perimeter of the electrical model; Pr = Prandtl npumber, Pr =
= v /a; q, = heat flux of fluid per unit cross sectional area of duct; R = resis-
tance of conducting sheet; Re = Reynolds number, Re = udn/v; t = time; T = ten-

perature; w = velocity of fluid in z-direction; x, y, z = coordinates in the

13
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investigated thermsl system; x*, y*¥ = coordinates of electrical analog model;
X, ¥, Z = dimensionless coordinates of thermsl system, X = x/dh, Y = ’/dh’ 7 =
= z/ thePr; X¥*, Y¥, Z¥ = dimensionless coordinates in electrical analog model,
X¥* = x*/dﬁ, Y* = y*/d"ﬁ, 7% = t/df‘ﬂc; & = thermal diffusivity, & = k/pc; 9=
= dimensionless temperature, 6 = (T - To)k/hqwdh; 0¥ = dimensionless potential,
| 0% = (E - EO) /hiwd"ﬁR; P = density; o = inside surface of duct; &% = curve cor-
responding to the boundary of the electrical analog model; ¥ = dimensionless
form of curve 03 r* = dimensionless form of curve o¥*. Subscripts: b) reduced,
or average; w) wall, or boundary; O) condition at z = 0 or t = O.
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